## Анализ качественных данных

доцент кафедры «Эпидемиологии, доказательной медицины и биостатистики» КМУ ВШОЗ, PhD., Сыдықова Б.Қ b.sydykova@ksph.kz

## Повтор предыдущей темы:

Какой критерий необходимо использовать, чтобы вычислить статистическую значимость различий в сроке стационарного лечения у больных после ДТП в разных отделениях

| Профиль стационара: | Срок стационарного лечения, койко-дни |      |      |      |          |            |
|---------------------|---------------------------------------|------|------|------|----------|------------|
| 1                   | M                                     | Me   | Q1   | Q3   | Критерий | Значение р |
| ТО                  | 20,8                                  | 18,0 | 10,0 | 27,0 |          | p<0,001    |
| НХО                 | 13,1                                  | 10,0 | 8,0  | 14,0 |          |            |
| ДХО                 | 15,4                                  | 10,0 | 8,0  | 18,0 |          |            |

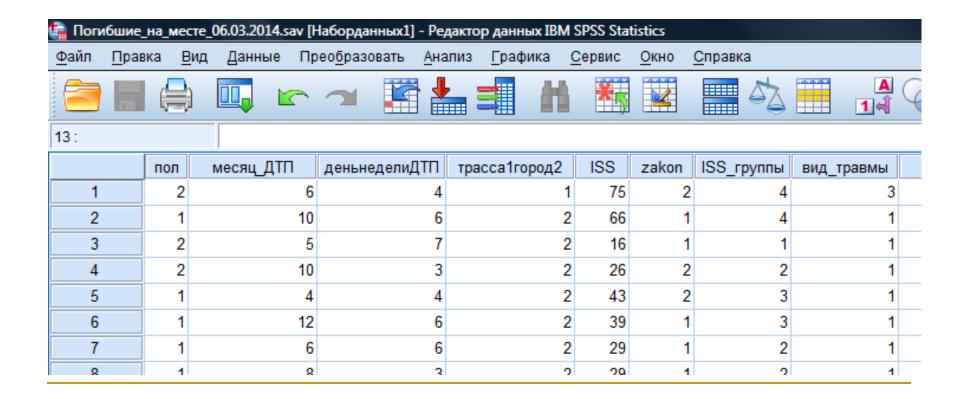
- 1. t-критерий Стьюдента для независимых выборок
- 2. Дисперсионный анализ
- 3. Критерий хи-квадрат Пирсона
- 4. Критерий Краскела-Уоллиса
- 5. Критерий Манна-Уитни

## Повтор предыдущей темы:

■ Среднее значение холестерина в группе, состоящей из 25 афроамериканцев составило 271 мг/дл, а в группе латиноамериканцев — 184 мг/дл. Какой метод следует применить, чтобы определить являются ли различия между группами статистически значимыми?

- 1. Критерий Краскела-Уоллиса
- 2. Корреляционный анализ
- 3. Дисперсионный анализ для связанных выборок
- 4. Точный критерий Фишера
- 5. Критерий Стьюдента для независимых выборок

## ПОВТОР ПРЕДЫДУЩЕЙ ТЕМЫ:


Какой критерий необходимо использовать, чтобы вычислить статистическую значимость различий в сроке стационарного лечения у больных после ДТП с наличием алкогольного опьянения и шока в анамнезе?

|                       | Срок стационарного лечения, койко-дни |      |      |      |          |            |
|-----------------------|---------------------------------------|------|------|------|----------|------------|
| Наименование          | M                                     | Me   | Q1   | Q3   | Критерий | Значение р |
| Алкогольное опьянение |                                       |      |      |      |          |            |
| Есть                  | 20,1                                  | 16,5 | 10,0 | 27,0 |          | m<0.001    |
| Нет                   | 16,4                                  | 11,0 | 8,0  | 21,0 |          | p<0,001    |

- •t-критерий Стьюдента для независимых выборок
- •Дисперсионный анализ
- •Критерий хи-квадрат Пирсона
- •Критерий Краскела-Уолисса
- •Критерий Манна-Уитни

## Анализ номинальных данных в SPSS

- Исследование наблюдение (Surveillance).
- Погибшие в ДТП, смерть которых наступила на месте происшествия.
- Выборка сплошная. Период исследования: 2006-2010 гг.



## Характеристика

#### Статистики

|   |             | пол | месяц_ДТП | день недели<br>ДТП | трасса (1)<br>/город(2) | zakon | ISS_группы | вид_травмы |
|---|-------------|-----|-----------|--------------------|-------------------------|-------|------------|------------|
| Ν | Валидные    | 195 | 195       | 195                | 195                     | 195   | 195        | 195        |
|   | Пропущенные | 0   | 0         | 0                  | 0                       | 0     | 0          | 0          |

#### Частотная таблица

#### пол

|          |       | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|-------|---------|---------|---------------------|-------------------------|
| Валидные | муж   | 144     | 73,8    | 73,8                | 73,8                    |
|          | жен   | 51      | 26,2    | 26,2                | 100,0                   |
|          | Итого | 195     | 100,0   | 100,0               |                         |

#### ISS\_группы

|          |                | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|----------------|---------|---------|---------------------|-------------------------|
| Валидные | легкая         | 17      | 8,7     | 8,7                 | 8,7                     |
|          | средняя        | 61      | 31,3    | 31,3                | 40,0                    |
|          | тяжелая        | 37      | 19,0    | 19,0                | 59,0                    |
|          | крайне тяжелая | 80      | 41,0    | 41,0                | 100,0                   |
|          | Итого          | 195     | 100,0   | 100,0               |                         |

#### вид\_травмы

|          |          | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|----------|---------|---------|---------------------|-------------------------|
| Валидные | пешеход  | 51      | 26,2    | 26,2                | 26,2                    |
|          | пассажир | 65      | 33,3    | 33,3                | 59,5                    |
|          | водитель | 73      | 37,4    | 37,4                | 96,9                    |
|          | прочие   | 6       | 3,1     | 3,1                 | 100,0                   |
|          | Итого    | 195     | 100,0   | 100,0               |                         |

#### месяц\_ДТП

|          |          | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|----------|---------|---------|---------------------|-------------------------|
| Валидные | январь   | 11      | 5,6     | 5,6                 | 5,6                     |
|          | февраль  | 13      | 6,7     | 6,7                 | 12,3                    |
|          | март     | 4       | 2,1     | 2,1                 | 14,4                    |
|          | апрель   | 14      | 7,2     | 7,2                 | 21,5                    |
|          | май      | 16      | 8,2     | 8,2                 | 29,7                    |
|          | июнь     | 29      | 14,9    | 14,9                | 44,6                    |
|          | июль     | 23      | 11,8    | 11,8                | 56,4                    |
|          | август   | 26      | 13,3    | 13,3                | 69,7                    |
|          | сентябрь | 23      | 11,8    | 11,8                | 81,5                    |
|          | октябрь  | 21      | 10,8    | 10,8                | 92,3                    |
|          | ноябрь   | 8       | 4,1     | 4,1                 | 96,4                    |
|          | декабрь  | 7       | 3,6     | 3,6                 | 100,0                   |
|          | Итого    | 195     | 100,0   | 100,0               |                         |

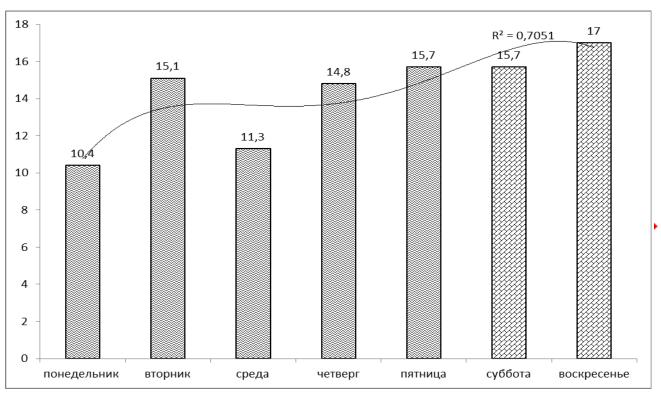
#### день недели ДТП

|          |             | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|-------------|---------|---------|---------------------|-------------------------|
| Валидные | понедельник | 19      | 9,7     | 9,7                 | 9,7                     |
|          | вторник     | 37      | 19,0    | 19,0                | 28,7                    |
|          | среда       | 16      | 8,2     | 8,2                 | 36,9                    |
|          | четверг     | 26      | 13,3    | 13,3                | 50,3                    |
|          | пятница     | 34      | 17,4    | 17,4                | 67,7                    |
|          | суббота     | 30      | 15,4    | 15,4                | 83,1                    |
|          | воскресенье | 33      | 16,9    | 16,9                | 100,0                   |
|          | Итого       | 195     | 100,0   | 100,0               |                         |

#### трасса (1)/город(2)

|          |        | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|--------|---------|---------|---------------------|-------------------------|
| Валидные | трасса | 140     | 71,8    | 71,8                | 71,8                    |
|          | город  | 55      | 28,2    | 28,2                | 100,0                   |
|          | Итого  | 195     | 100,0   | 100,0               |                         |

#### zakon

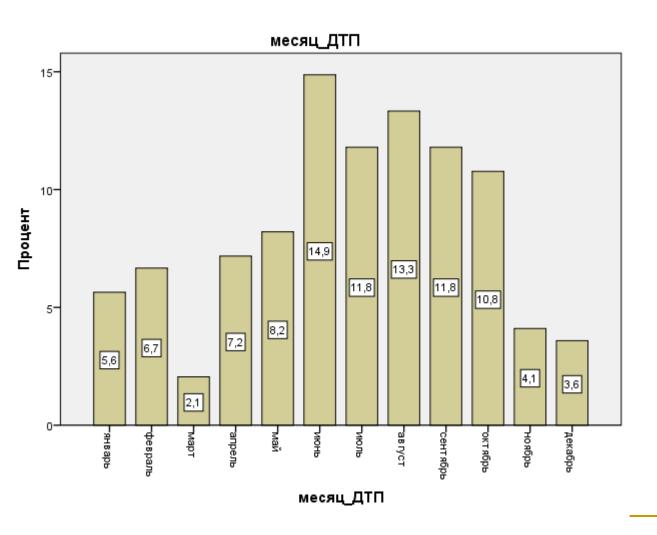

|          |           | Частота | Процент | Валидный<br>процент | Накопленны<br>й процент |
|----------|-----------|---------|---------|---------------------|-------------------------|
| Валидные | Іпериод   | 113     | 57,9    | 57,9                | 57,9                    |
|          | II период | 82      | 42,1    | 42,1                | 100,0                   |
|          | Итого     | 195     | 100,0   | 100,0               |                         |

## Качественные данные

- Дихотомические (0,1)
- Номинальные (А,В,С)
- Порядковые (I, II, III)

### Хи-квадрат Пирсона

На столбиковой диаграмме представлена средняя сезонность летальных случаев в течение недели (%) от ДТП.




#### Статистики критерия

|              | день недели<br>ДТП |
|--------------|--------------------|
| Хи-квадрат   | 13,456ª            |
| CT.CB.       | 6                  |
| Асимпт. знч. | ,036               |

а. Частоты, меньшие 5, ожидались в 0 ячейках (0,0%). Минимальная ожидаемая частота равна 27,9.

## Хи-квадрат Пирсона



#### Статистики критерия

|              | месяц_ДТП |
|--------------|-----------|
| Хи-квадрат   | 44,200ª   |
| CT.CB.       | 11        |
| Асимпт. знч. | ,000      |

а. Частоты, меньшие 5, ожидались в 0 ячейках (0,0%). Минимальная ожидаемая частота равна 16,3.

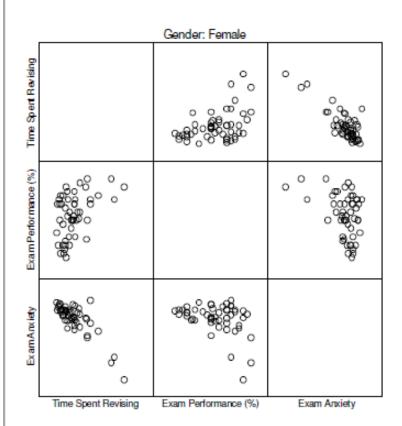
## Что показывает критерий $\chi^2$

- Есть ли взаимосвязь между качественными переменными
- Не показывает где эти различия в случае многопольных таблиц
- Не показывает силу взаимосвязи

## Необходимые условия для критерия хиквадрат

- Независимость наблюдений (каждый участник исследования может находиться только в одной ячейке таблицы)
- Количество ожидаемых наблюдений в ячейке ≥ 5 в таблицах 2х2
- Не более 20% ячеек с ожидаемым числом наблюдений < 5 в многопольных таблицах
- SPSS: Analyze->Descriptive Statistics->Crosstabs. В меню Statistics выбрать chi-square. Можно выбрать Exact или Monte-Carlo.

## Что показыват силу взаимосвязи?

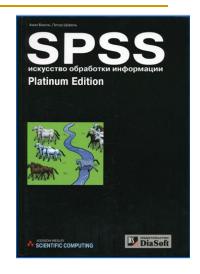

- Phi (От 0 до 1. Только для 2х2 таблиц)
- Коффициент сопряженности (Contingency coefficient) Редко достигает максимума (1)
- Cramer's V (от 0 до 1)
- Отношение шансов (Odds ratio)

## Критерии для ранговых переменных

- Kendall's tau-b
- Kendall's tau-c
- Somer's d
- Gamma
- Значения для всех критериев варьирует от -1 до 1.
- Интерпретация как для корреляционного анализа

## Проф. Гржибовский А.М.

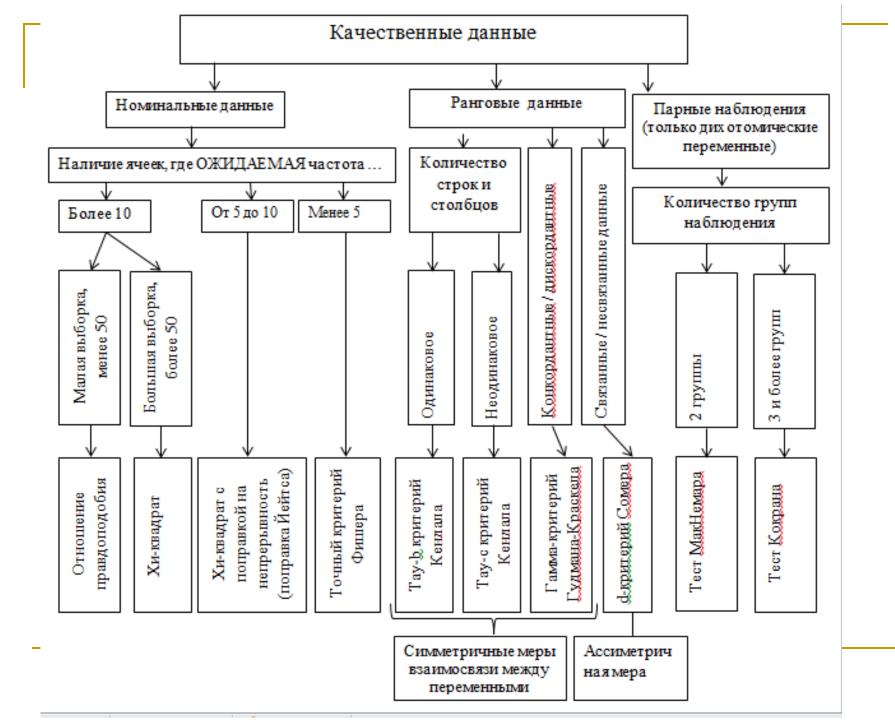
## Корреляционная матрица




- Коэффициент корреляции всегда между -1 и 1.
- 0 нет связи
- 1 идеальная прямопропорциональная зависимость
- -1 идеальная обратнопропорциональная зависимость
- 0.7 сильная связь?
- 0.5 средней силы?
- 0.3 слабая связь?

Ахим Бююль, Петер Цефель

## SPSS: искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей.

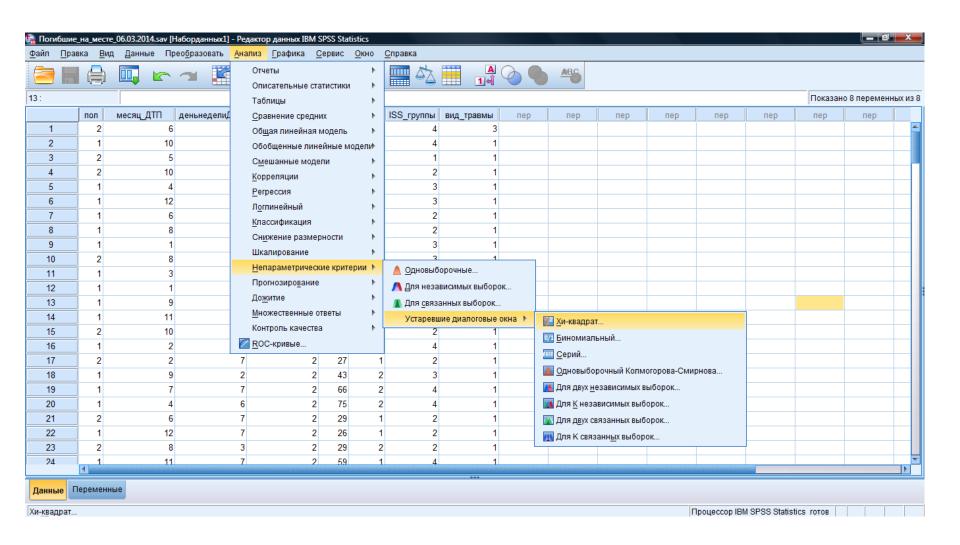

SPSS Version 10. Einfuhrung in die moderne Datenanalyse unter Windows

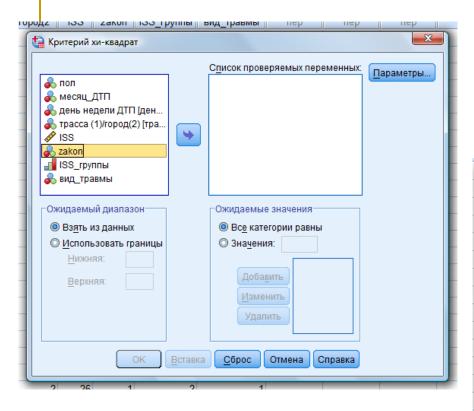


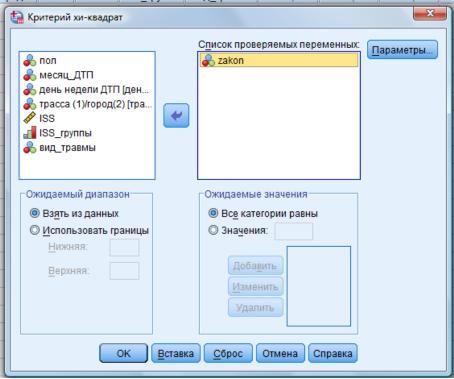
| Значение коэффициента корреляции г | Интерпретация            |
|------------------------------------|--------------------------|
| 0 < Γ <= 0,2                       | Очень слабая корреляция  |
| 0,2 < Γ <= 0,5                     | Слабая корреляция        |
| 0,5 < Γ <= 0,7                     | Средняя корреляция       |
| 0,7 < Γ <= 0,9                     | Сильная корреляция       |
| 0,9 < Γ <= 1                       | Очень сильная корреляция |

## Аналоги для парных наблюдений

- McNemar test для двух групп
- Analyze->Non-parametric tests->2 related samples.
   Выбрать McNemar
- Cochrane's Q-test для 3 и более
- Analyze->Non-parametric tests->K related samples. Выбрать Cochrane's Q
- Оба критерия только для дихотомических переменных (0:1)





### Практические задания:


- 1. Как повлияло на смертность от ДТП по Семейскому региону введение Закона 2008 года (до / после)?
- 2. Изменилось ли распределение локализаций фатальных ДТП (трасса / город) после внедрения Закона (до / после)?
- 3. Имеются ли различия в тяжести полученных травм (легкая, средняя, тяжелая, крайне тяжелая) при локализации фатального ДТП (трасса / город)?

### Практические задания:

- 1. Как повлияло на смертность от ДТП по Семейскому региону введение Закона 2008 года (до / после)?
- 2. Изменилось ли распределение локализаций фатальных ДТП (трасса / город) после внедрения Закона (до / после)?
- 3. Имеются ли различия в тяжести полученных травм (легкая, средняя, тяжелая, крайне тяжелая) при локализации фатального ДТП (трасса / город)?





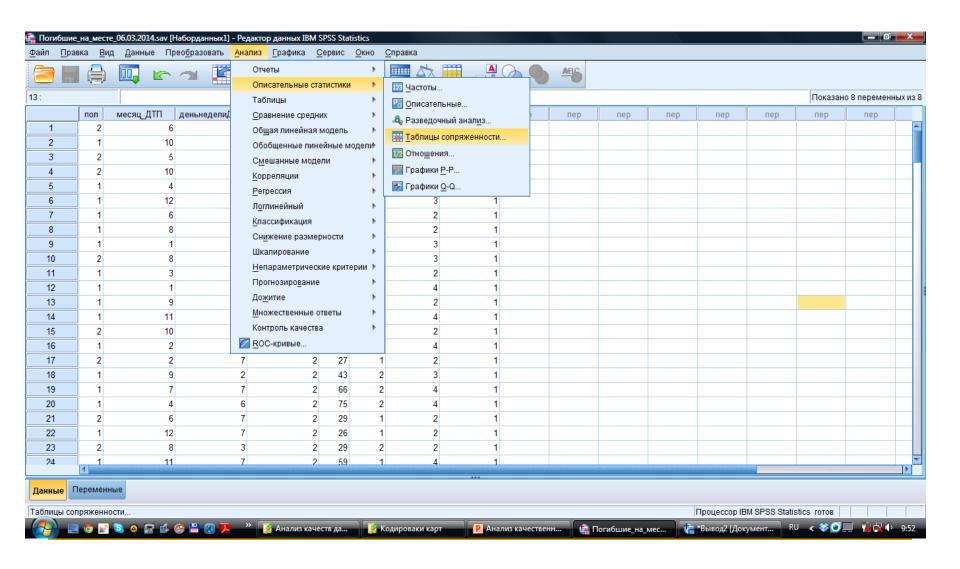


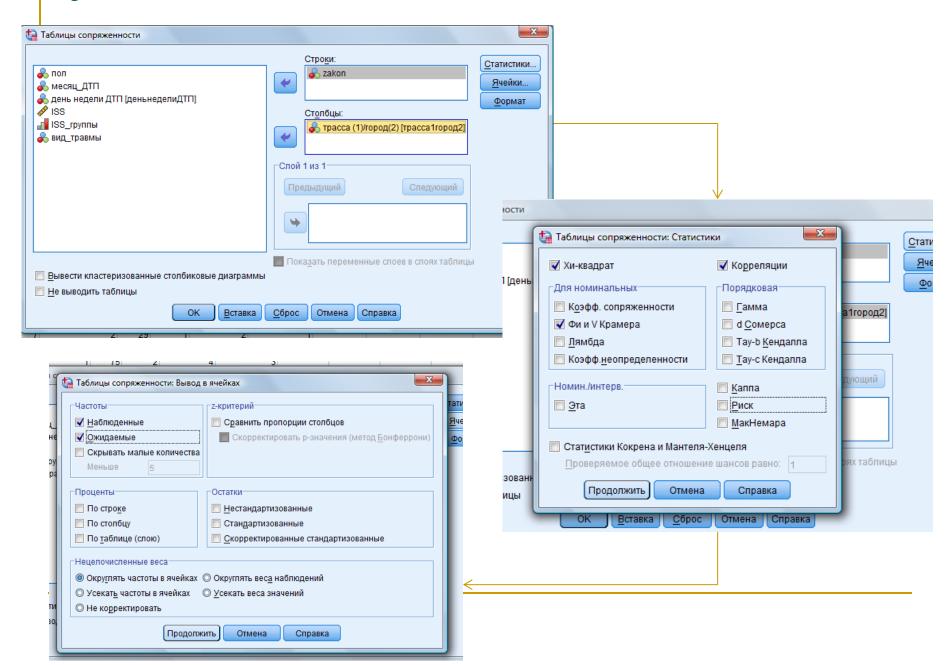
### Критерий хи-квадрат

### Частоты

#### zakon

|           | Наблюденно<br>е N | Ожидаемое<br>N | Остаток |
|-----------|-------------------|----------------|---------|
| Іпериод   | 113               | 97,5           | 15,5    |
| II период | 82                | 97,5           | -15,5   |
| Всего     | 195               |                |         |


#### Статистики критерия


|              | zakon  |
|--------------|--------|
| Хи-квадрат   | 4,928ª |
| ст.св.       | 1      |
| Асимпт. знч. | ,026   |

а. Частоты, меньшие 5, ожидались в 0 ячейках (0,0%). Минимальная ожидаемая частота равна 97,5.

## Практические задания:

- 1. Как повлияло на смертность от ДТП по Семейскому региону введение Закона 2008 года (до / после)?
- 2. Изменилось ли распределение локализаций фатальных ДТП (трасса / город) после внедрения Закона (до / после)?
- 3. Имеются ли различия в тяжести полученных травм (легкая, средняя, тяжелая, крайне тяжелая) при локализации фатального ДТП (трасса / город)?





#### Сводка обработки наблюдений

|                                 | Наблюдения |         |             |         |       |         |  |
|---------------------------------|------------|---------|-------------|---------|-------|---------|--|
|                                 | Вали       | дные    | Пропущенные |         | Итого |         |  |
|                                 | N          | Процент | N           | Процент | N     | Процент |  |
| zakon * трасса (1)/город<br>(2) | 195        | 100,0%  | 0           | 0,0%    | 195   | 100,0%  |  |

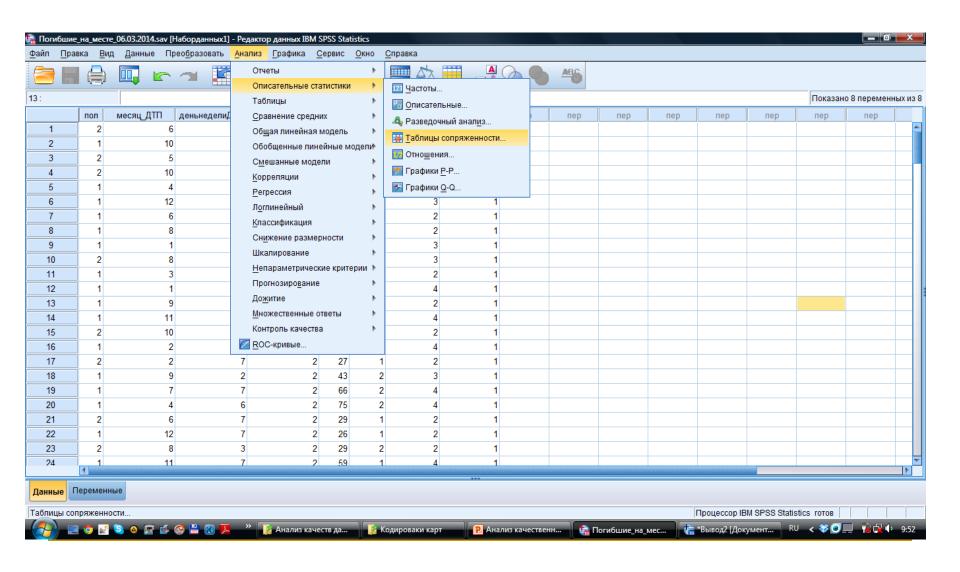
#### Таблица сопряженности zakon \* трасса (1)/город(2)

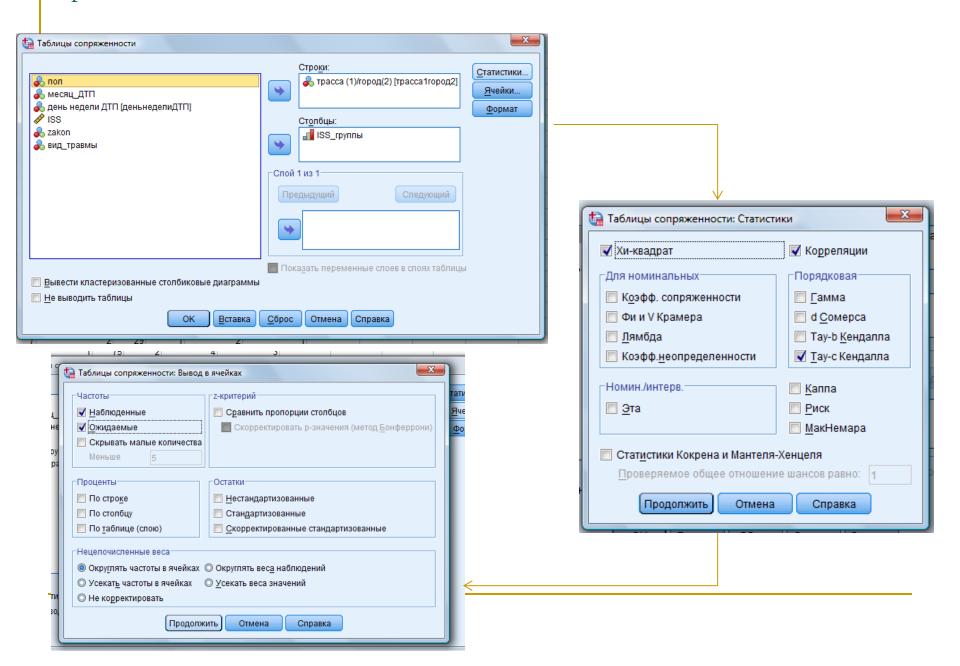
|       |           |                   | трасса (1) | /город(2) |       |
|-------|-----------|-------------------|------------|-----------|-------|
|       |           |                   | трасса     | город     | Итого |
| zakon | Іпериод   | Частота           | 80         | 33        | 113   |
|       |           | Ожидаемая частота | 81,1       | 31,9      | 113,0 |
|       | II период | Частота           | 60         | 22        | 82    |
|       |           | Ожидаемая частота | 58,9       | 23,1      | 82,0  |
| Итого |           | Частота           | 140        | 55        | 195   |
|       |           | Ожидаемая частота | 140,0      | 55,0      | 195,0 |

#### Критерии хи-квадрат

|                                                    | Значение | ст.св. | Асимпт.<br>значимость<br>(2-стор.) | Точная<br>значимость<br>(2-стор.) | Точная<br>значимость<br>(1-стор.) |
|----------------------------------------------------|----------|--------|------------------------------------|-----------------------------------|-----------------------------------|
| Хи-квадрат Пирсона                                 | ,132ª    | 1      | ,716                               |                                   |                                   |
| Поправка на<br>непрерывность <sup>в</sup>          | ,041     | 1      | ,840                               |                                   |                                   |
| Отношение<br>правдоподобия                         | ,133     | 1      | ,716                               |                                   |                                   |
| Точный критерий<br>Фишера                          |          |        |                                    | ,749                              | ,421                              |
| Линейно-линейная                                   | ,132     | 1      | ,717                               |                                   |                                   |
| связь (ДО / ПОСЛЕ<br>Кол-во валидных<br>наблюдений | ) 195    |        |                                    |                                   |                                   |

- а. В 0 (0,0%) ячейках ожидаемая частота меньше 5. Минимальная ожидаемая частота равна 23,13.
- b. Вычисляется только для таблицы 2x2.


#### Симметричные меры


|                                 |                      | Значение | Асимптотиче<br>ская<br>стдандартна<br>я ошибка <sup>а</sup> | Прибл. Т <sup>b</sup> | Прибл.<br>значимость |
|---------------------------------|----------------------|----------|-------------------------------------------------------------|-----------------------|----------------------|
| Номинальная по<br>номинальной   | Фи                   | -,026    |                                                             |                       | ,716                 |
|                                 | V Крамера            | ,026     |                                                             |                       | ,716                 |
| Интервальная по<br>интервальной | R Пирсона            | -,026    | ,071                                                        | -,362                 | ,718 <sup>c</sup>    |
| Порядковая по<br>порядковой     | Корреляция Спирмена. | -,026    | ,071                                                        | -,362                 | ,718 <sup>c</sup>    |
| Кол-во валидных набли           | одений               | 195      |                                                             |                       |                      |

- а. Не подразумевая истинность нулевой гипотезы.
- b. Используется асимптотическая стандартная ошибка в предположении истинности нулевой гипотезы.
- с. На основании нормальной аппроксимации.

### Практические задания:

- 1. Как повлияло на смертность от ДТП по Семейскому региону введение Закона 2008 года (до / после)?
- 2. Изменилось ли распределение локализаций фатальных ДТП (трасса / город) после внедрения Закона (до / после)?
- 3. Имеются ли различия в тяжести полученных травм (легкая, средняя, тяжелая, крайне тяжелая) при локализации фатального ДТП (трасса / город)?





#### Сводка обработки наблюдений

|                                     | Наблюдения |         |             |         |       |         |  |
|-------------------------------------|------------|---------|-------------|---------|-------|---------|--|
|                                     | Вали       | дные    | Пропущенные |         | Итого |         |  |
|                                     | Ν          | Процент | N           | Процент | N     | Процент |  |
| трасса (1)/город(2) *<br>ISS_группы | 195        | 100,0%  | 0           | 0,0%    | 195   | 100,0%  |  |

#### Таблица сопряженности трасса (1)/город(2) \* ISS\_группы

|                     |        |                   |        | ISS_группы |         |                   |       |  |  |
|---------------------|--------|-------------------|--------|------------|---------|-------------------|-------|--|--|
|                     |        |                   | легкая | средняя    | тяжелая | крайне<br>тяжелая | Итого |  |  |
| трасса (1)/город(2) | трасса | Частота           | 12     | 41         | 24      | 63                | 140   |  |  |
|                     |        | Ожидаемая частота | 12,2   | 43,8       | 26,6    | 57,4              | 140,0 |  |  |
|                     | город  | Частота           | 5      | 20         | 13      | 17                | 55    |  |  |
|                     |        | Ожидаемая частота | 4,8    | 17,2       | 10,4    | 22,6              | 55,0  |  |  |
| Итого               |        | Частота           | 17     | 61         | 37      | 80                | 195   |  |  |
|                     |        | Ожидаемая частота | 17,0   | 61,0       | 37,0    | 80,0              | 195,0 |  |  |

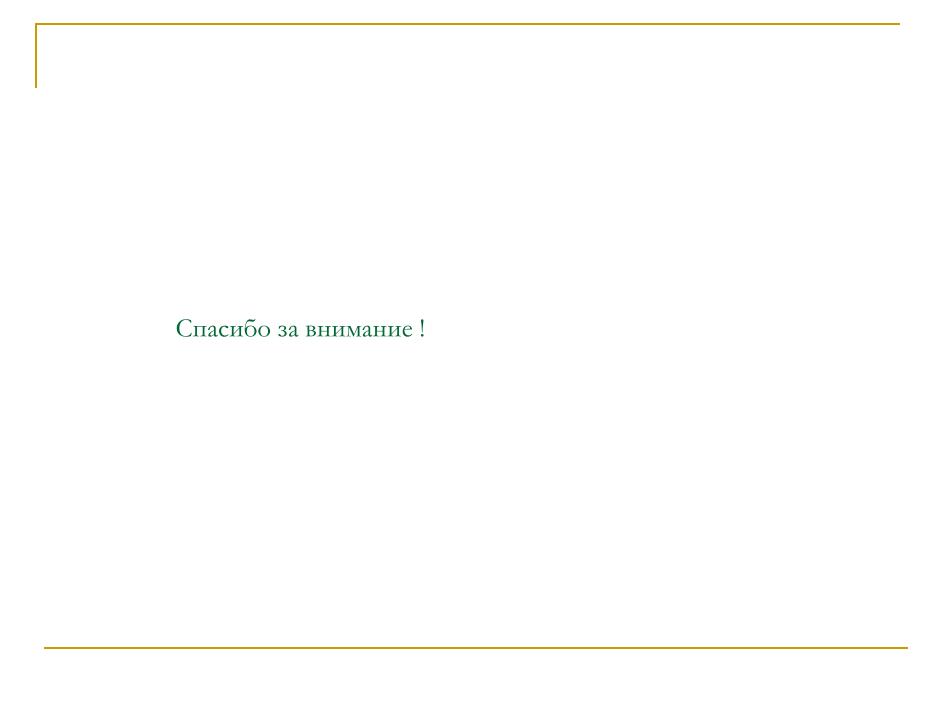
#### Критерии хи-квадрат

|                               | Значение | ст.св. | Асимпт.<br>значимость<br>(2-стор.) |
|-------------------------------|----------|--------|------------------------------------|
| Хи-квадрат Пирсона            | 3,433ª   | 3      | ,330                               |
| Отношение<br>правдоподобия    | 3,489    | 3      | ,322                               |
| Линейно-линейная<br>связь     | 1,818    | 1      | ,178                               |
| Кол-во валидных<br>наблюдений | 195      |        |                                    |

а. В 1 (12,5%) ячейках ожидаемая частота меньше 5. Минимальная ожидаемая частота равна 4,79.

#### Симметричные меры

|                                 |                      | Значение | Асимптотиче<br>ская<br>стдандартна<br>я ошибка <sup>а</sup> | Прибл. Т <sup>Ь</sup> | Прибл.<br>значимость |
|---------------------------------|----------------------|----------|-------------------------------------------------------------|-----------------------|----------------------|
| Порядковая по<br>порядковой     | Тау-с Кендалла       | -,101    | ,069                                                        | -1,473                | ,141                 |
|                                 | Корреляция Спирмена. | -,103    | ,070                                                        | -1,438                | ,152°                |
| Интервальная по<br>интервальной | R Пирсона            | -,097    | ,070                                                        | -1,351                | ,178°                |
| Кол-во валидных набли           | одений               | 195      |                                                             |                       |                      |


- а. Не подразумевая истинность нулевой гипотезы.
- b. Используется асимптотическая стандартная ошибка в предположении истинности нулевой гипотезы.
- с. На основании нормальной аппроксимации.

|       |           |                     |        |         | ISS_группы  |         |             |         |             |                |             |  |
|-------|-----------|---------------------|--------|---------|-------------|---------|-------------|---------|-------------|----------------|-------------|--|
|       |           |                     |        | легкая  |             | средняя |             | тяжелая |             | крайне тяжелая |             |  |
|       |           |                     |        | Частоты | % по строке | Частоты | % по строке | Частоты | % по строке | Частоты        | % по строке |  |
| zakon | Iпериод   | трасса (1)/город(2) | трасса | 3       | 3,8%        | 22      | 27,5%       | 13      | 16,2%       | 42             | 52,5%       |  |
|       |           |                     | город  | 3       | 9,1%        | 11      | 33,3%       | 10      | 30,3%       | 9              | 27,3%       |  |
|       | II период | трасса (1)/город(2) | трасса | 9       | 15,0%       | 19      | 31,7%       | 11      | 18,3%       | 21             | 35,0%       |  |
|       |           |                     | город  | 2       | 9,1%        | 9       | 40,9%       | 3       | 13,6%       | 8              | 36,4%       |  |

| Симметричные | меры |
|--------------|------|
|--------------|------|

|  | zakon                      |                             |                | Значение | Асимптотиче<br>ская<br>стдандартна<br>я ошибка <sup>а</sup> | Прибл. Т <sup>b</sup> | Прибл.<br>значимость |
|--|----------------------------|-----------------------------|----------------|----------|-------------------------------------------------------------|-----------------------|----------------------|
|  | Iпериод                    | Порядковая по<br>порядковой | Тау-с Кендалла | -,198    | ,090                                                        | -2,201                | ,028                 |
|  | Кол-во валидных наблюдений |                             | 113            |          |                                                             |                       |                      |
|  | II период                  | Порядковая по<br>порядковой | Тау-с Кендалла | ,014     | ,106                                                        | ,135                  | ,893,                |
|  | Кол-во валидных наблюдений |                             | 82             |          |                                                             |                       |                      |

- а. Не подразумевая истинность нулевой гипотезы.
- b. Используется асимптотическая стандартная ошибка в предположении истинности нулевой гипотезы.





## Систематический обзор

- это научная работа, где объектом изучения служат результаты ряда оригинальных исследований.

В обзоре анализируются результаты этих исследований с использованием подходов уменьшающих возможность систематических и случайных ошибок

## Систематические обзоры

 являются обобщением результатов различных исследований на заданную тему и являются одними из наиболее "читаемых" вариантов научных публикаций, так как позволяют быстро и наиболее полно познакомиться с интересующей врача проблемой

# Качественный систематический обзор

 обзор, в котором результаты оригинальных исследований рассмотрены, но статистически не объединены

### Возможные недостатки качественных систематических обзоров

- Нередко рассматривают широкий спектр клинических вопросов
- Не используются строго научные методы
- Ошибки, связанные с преимущественным отбором положительных результатов
- Часто отражают лишь субъективное мнение авторов

#### Мета-анализ

 Количественный систематический обзор литературы... или... количественный синтез первичных данных с целью получения суммарных статистических показателей

Chalmers I., Altman D.G. Systematic reviews. London: BMJ Publishing group; 1995:1

#### Мета-анализы

 являются вершиной иерархии доказательств и серьезными научными исследованиями

### Для чего нужны мета-анализы?

 В настоящее время ежегодно публикуются более 2 млн медицинских статей, не считая материалов конференций. При таких условиях необходим синтез информации с использованием строго научных методов и статистической обработки

## Примеры расхождения результатов качественных обзоров и мета-анализов

 Снижение заболеваемости простудой в результате применения витамина С

Pouling L. How to live longer and feel better.

New-York: Freeman; 1986

Kleijnen L., Knipschild P.

Pharm Wekbl (Sci) 1992; 14:316-320

## Примеры расхождения результатов качественных обзоров и мета-анализов. Продолжение

 Эффективность лидокаина при ОИМ в метаанализе не подтвердилась

Antman EM et al. JAMA 1992; 268:240-8

- Рекомендации по применению гепарина при ишемическом инсульте варьируют. Метаанализ не установил окончательно эффективность гепаринотерапии
- Sandercock PAG et al. J.Neurol Neuroserg Psych, 1993; 56:17-25

### Примеры эффективности метаанализов

 Мета-анализ показал, что в специализированных инсультных отделениях отношение шансов смерти или инвалидности ниже на 33%, хотя в ряде РКИ этого выявлено не было

Landhorne P. Cerebrovasc Dis 1994; 4:258

### Примеры эффективности мета-анализов. Продолжение

 Снижение летальности в результате внутривенного введения стрептокиназы при ОИМ показано в мета-анализе 33 РКИ

Lau J et al. N Engl J Med 1992; 327:248-54

#### Области применения мета-анализов

- Предоставляют врачу максимально объективную информацию, включая оценку эффективности различных методов
- Помогают обосновать исследовательскую гипотезу, размер планируемого клинического исследования, а также определить важные побочные эффекты изучаемого препарата
- Помогают организаторам здравоохранения в выработке рекомендаций и законодательных актов ( регулярно обновляемые рекомендации ААС по ведению больных)

#### Алгоритм проведения мета-анализа

- Установить целесообразность проведения мета-анализа и сформулировать цель
- Определить методы отбора и статистического анализа данных и качества публикаций, критерии включения оригинальных исследований
- Найти все исследования по теме, отвечающие критериям
- Оценить отобранные публикации

#### Алгоритм проведения мета-анализа. Продолжение

- Сформировать максимально полную базу данных по теме мета-анализа
- Объединить эти данные для анализа
- С помощью статистических методов учесть факторы влияющие на конечный результат, провести анализ чувствительности
- Описать все возможные ограничения и расхождения в базе данных

### Алгоритм проведения мета-анализа. Продолжение

- Подготовить выводы и рекомендации для врачебной практики и дальнейших научных исследований
- Подготовить структурированный реферат

#### Формулирование цели мета-анализа

- Цель должна быть четко и конкретно сформулирована в виде клинического вопроса
- Правильно поставленная цель имеет большое значение для выработки стратегии отбора исследований и критериев включения данных
- Часто целью мета-анализа является определение сравнительной эффективности какого либо метода лечения или определение суммарного эффекта нескольких препаратов сходного действия

### Основные этапы поиска данных по теме мета-анализа

- 1. Просмотр электронных баз данных (MEDLINE и многих других)
- 2. Просмотр библиографических ссылок в статьях и книгах, содержащих указания на интересующие публикации
- 3. Контакты с представителями фармфирм производящими оцениваемые препараты
- 4. Контакты с другими специалистами в данной области

### Отбор исследований для включения в мета-анализ

- 1. Четкие критерии включения и исключения больных
- 2. Место проведения исследования
- 3. Продолжительность исследования
- 4. Основные характеристики больных
- 5. Диагностические критерия заболевания
- 6. Схема применения препарата

### Отбор исследований для включения в мета-анализ. Продолжение

- 7. Дополнительное лечение и наличие сопутствующих заболеваний
- 8. Отклонения от протокола (если таковые имелись)
- 9. Изучавшиеся клинические исходы и критерии их оценки
- 10. Длительность периода наблюдения за больными
- 11. Наличие в исследованиях абсолютного числа больных и клинических исходов

### Оценка качества клинических исследований

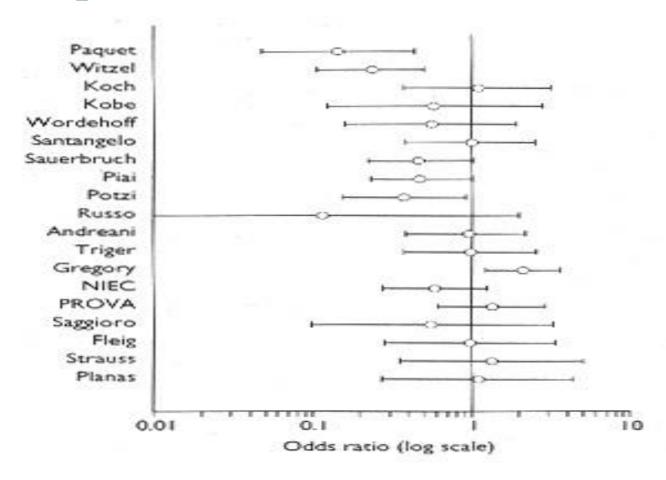
- При оценке исследования предпочтение следует отдавать работам которые содержат:
- 1. Критерии включения и исключения больных
- 2. Характеристики больных (например, прогностические факторы)
- 3. Сведения о соблюдении протокола исследования (например о полноте наблюдения)
- 4. Описание вмешательства и результаты слепой оценки этой интервенции

### Сопоставимость включенных в анализ исследований

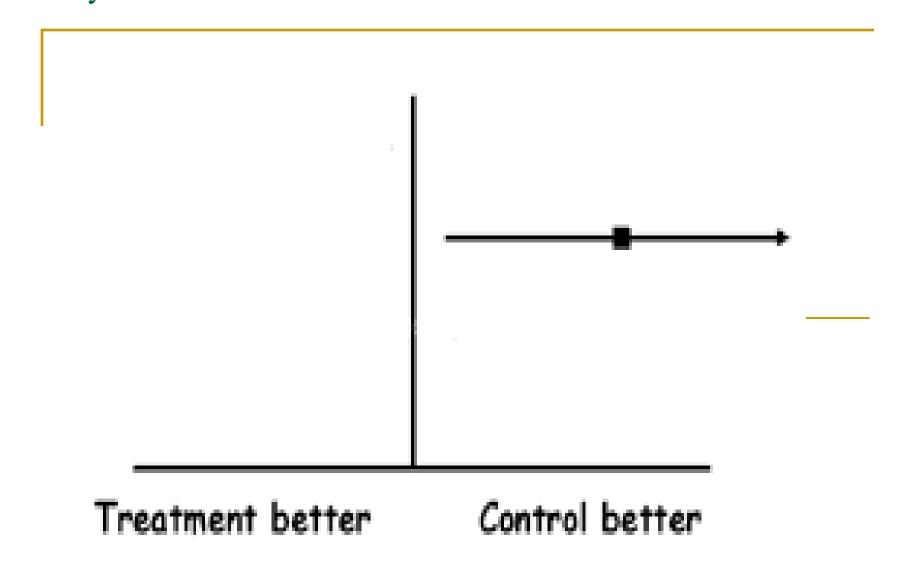
- Исследования, включенные в мета-анализ, должны быть максимально однородными по виду вмешательства, составу больных. Исходы также должны быть сходными
- Нельзя объединять исследования с различным лечением и рассматриваемыми исходами.
- Во всех оригинальных исследованиях должны приводиться сведения о факторах, имеющих значения для исхода (прогностические факторы)
- В мета-анализ обычно включают данные только РКИ.

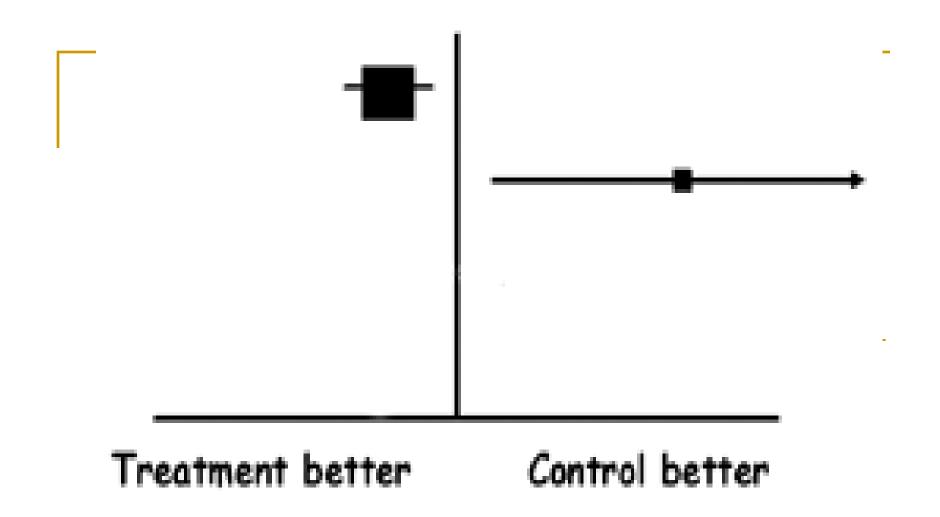
### Выбор данных из оригинальных исследований

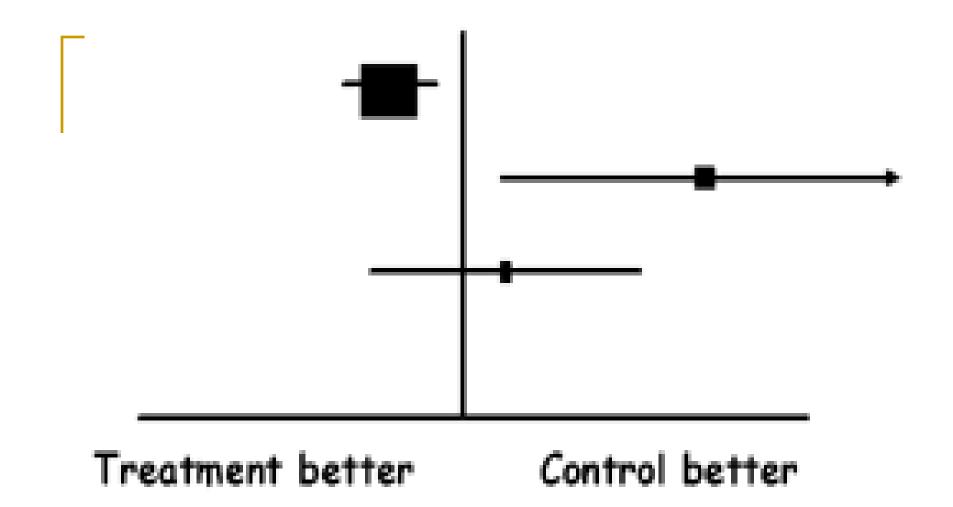
- Для исключения системных ошибок при отборе данных из оригинальных исследований необходимо:
- Участие в отборе по крайней мере двух, самостоятельно работающих авторов
- 2. Сравнение результатов по каждому исследованию, в случае расхождения принимается согласованное решение
- з. Разработать унифицированную форму и стандартизированную форму отбора

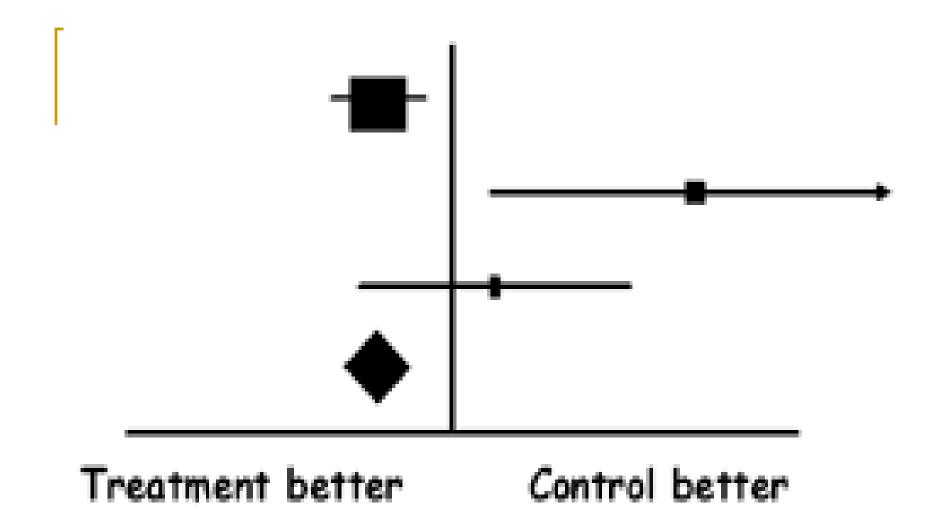

### Статистическая обработка данных

■ В мета-анализе можно использовать различные статистические методы и программы (например EpiInfo). Желательно представлять результаты как в относительных показателях (отношение шансов-ОШ, относительный риск-ОР, снижение относительного риска-СОР и т.д.), так и абсолютных (снижение абсолютного риска-САР, число больных, которых необходимо лечить-ЧБНЛ и т.д.)


#### Анализ чувствительности


- Проводится для проверки степени надежности выводов мета-анализа. Его можно проводить разными способами:
- 1. Включение и исключение исследований с низким методологическим уровнем
- 2. Изменение параметров данных, отбираемых из каждого исследования, например при различных сроках наблюдения
- 3. Исключение из мета-анализа наиболее крупных исследований. Если результат не меняется есть основания полагать, что выводы мета-анализа обоснованы


### Графическое представление результатов мета-анализа




#### Результаты мета-анализа, как их понять?









### Систематические обзоры

Цель

Научиться оценивать валидность и приложимость систематических обзоров и соответственно использовать результаты в принятии решений

### Валидны ли результаты?

- 1. Ясный клинический вопрос избран?
- 2. Критерии выбора статей на включение правильные?
- 3. Насколько вероятно, что нужные статьи/исследования пропущены?
- 4. Оценена ли валидность включенных исследований?
- 5. Воспроизводима ли оценка статей?
- 6. Совпадают ли результаты исследований, близки ли они?

### Каковы результаты?

- 1. Каков общий результат обзора?
- 2. Как точна оценка различия (эффекта)?

# Помогают ли эти результаты вести моих пациентов?

- 1. Приложимы результаты к моим пациентам?
- 2. Все ли важные исходы рассмотрены?
- 3. Стоят ли возможные преимущества лечения возможных расходов и вреда?

# Скрининг на рак молочной железы

#### Скрининг на рак молочной железы

(смертность за 7 лет) Кокрейновский систематический обзор, Р. Gotzsche, O. Olsen, 2002

Review Screening for breast cancer with mammography

Comparison: 01 Screening with mammography versus no screening

Outcome: 02 Overall mortality, 7 years follow-up

| Study                                                                                 | Screening n/N        | No screening<br>n/N  | Relative Risk (Fixed)<br>95% CI    | Weight (%) | Relative Risk (Fixed)<br>95%CI |
|---------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------|------------|--------------------------------|
| 01 Medium quality data<br>Canada 1980a                                                | 159 / 25214          | 156 / 25216          |                                    | 1,9        | 1,02[0,82, 1,27]               |
| Canada 1980b                                                                          | 253 / 19711          | 250 / 19894          |                                    |            |                                |
|                                                                                       |                      |                      |                                    | 3,1        | 1,01[0,85, 1,20]               |
| Malmo 1978                                                                            | 1777 / 21088         | 1809 / 21195         | <del>-</del>                       | 22,4       | 0,99[0,93, 1,05]               |
| Subtotal (95% CI)                                                                     | 2189 / 66013         | 2215 / 66105         | •                                  | 27,4       | 0,99[0,94, 1,05]               |
| Test for heterogeneity chi-sq.<br>Test for overall effect=0,27 p                      |                      | 384                  |                                    |            |                                |
| 02 Poor quality data                                                                  |                      |                      |                                    |            |                                |
| Goteborg 1982a                                                                        | 178 / 10888          | 185 / 13203          | +                                  | 2,1        | 1,17[0,95, 1,43]               |
| Goteborg 1982b                                                                        | 349 / 10112          | 591 / 15997          | <del></del>                        | 5,7        | 0,93 [ 0,82, 1,08 ]            |
| Kopparberg 1977                                                                       | 2593 / 39051         | 1216 / 18846         | <del>-</del>                       | 20,4       | 1,03 [ 0,96, 1,10 ]            |
| Stockholm 1981                                                                        | 1768 / 39139         | 1038 / 20978         | -                                  | 16,7       | 0,91 [ 0,85, 0,99 ]            |
| Ostergotland 1978                                                                     | 2253 / 39034         | 2204/37938           | +                                  | 27,7       | 0,99[0,94, 1,05]               |
| Subtotal (95% CI)<br>Test for heterogeneity chi-sq.<br>Test for overall effect=-0,80; | uare=8,82 df=4 p=0,0 | 5232 / 108980<br>658 | •                                  | 72,6       | 0,99[0,95, 1,02]               |
|                                                                                       |                      |                      |                                    |            |                                |
| Total (95% CI)<br>Test for heterogeneity chi-sq.<br>Test for overall effect=-0,83 p   | uare=8,99 df=7 p=0,2 | 7447 / 173065<br>535 | •                                  | 100,0      | 0,99[0,98, 1,02]               |
|                                                                                       |                      | ,5                   | .7 1 1,5                           | ż          |                                |
|                                                                                       |                      | F                    | avours screening Favours no screen | ning       |                                |

#### Скрининг на рак молочной железы

(смертность у пациентов с РМЖ за 7 лет)

Review Screening for breast cancer with mammography
Comparison: 01 Screening with mammography versus no screening
Outcome: 20 Mortality among breast cancer patients, 7 years follow-up

| Study                                                                                 | Treatment n/N        | Control<br>n/N  | Relative Risk (Fixed)<br>95% CI | Weight (%) | Relative Risk (Fixed)<br>95%CI |
|---------------------------------------------------------------------------------------|----------------------|-----------------|---------------------------------|------------|--------------------------------|
| 01 Mortality from cancers o                                                           | ther than breast can | oer             |                                 |            |                                |
| Kopparberg 1977                                                                       | 13/674               | 3/304           |                                 | 54,6       | 1,95 [ 0,58, 6,81 ]            |
| Ostergotland 1978                                                                     | 12/621               | 3/484           | -                               | 45,4       | 2,99 [ 0,85, 10,53 ]           |
| Subtotal (95% CI)<br>Test for heterogeneity chi-sq.<br>Test for overall effect=1,97 p | •                    | 6 / 768<br>386  | -                               | 100,0      | 2,42[ 1,00, 5,85]              |
| 02 Mortality from causes of                                                           | her than breast can  | ær              |                                 |            |                                |
| Kopparberg 1977                                                                       | 47 / 674             | 15/304          | -                               | 48,7       | 1,41 [ 0,80, 2,49 ]            |
| Ostergotland 1978                                                                     | 34/621               | 19 / 484        | -                               | 51,3       | 1,34[ 0,77, 2,31 ]             |
| Subtotal (95% CI)<br>Test for heterogeneity chi-sq.<br>Test for overall effect=1,58 p | •                    | 34 / 788<br>903 | •                               | 100,0      | 1,37[ 0,93, 2,04]              |
|                                                                                       |                      |                 |                                 |            |                                |
|                                                                                       |                      | ,01             | ,1 1 10                         | 100        |                                |

Favours treatment Favours control