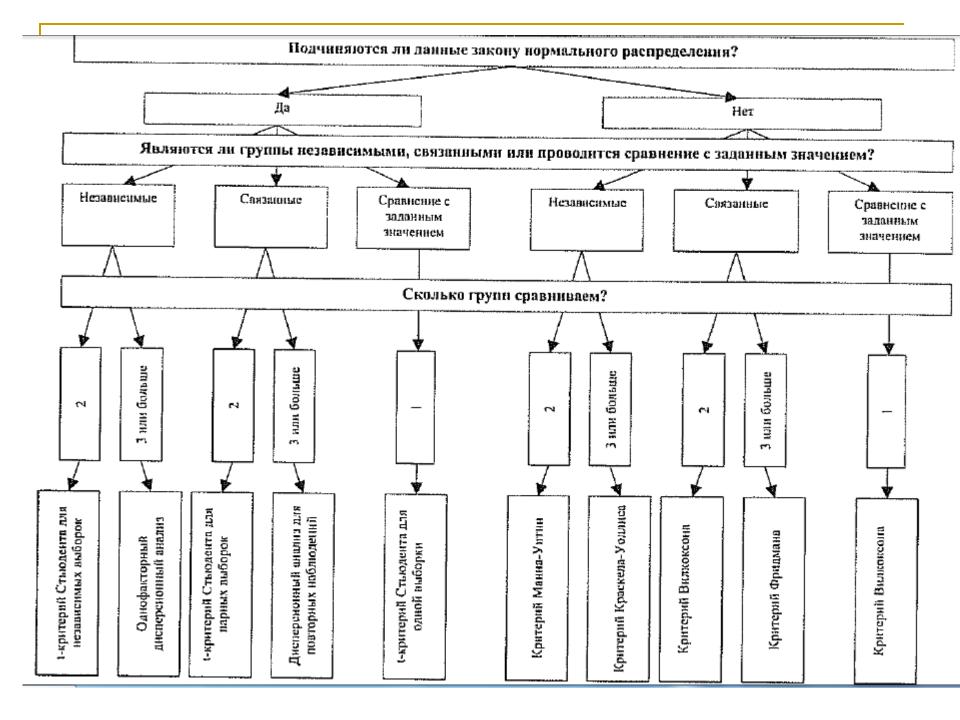
Выбор критерия для статистического анализа планируемого исследования

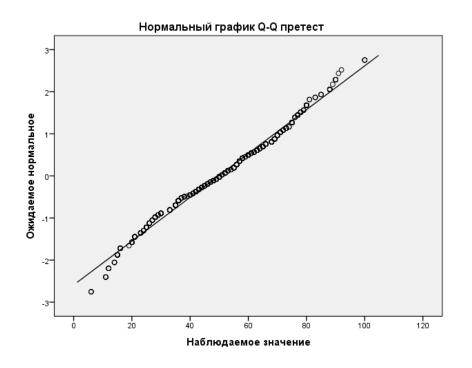
доцент кафедры «Эпидемиологии, доказательной медицины и биостатистики» КМУ ВШОЗ, PhD., Сыдықова Б.Қ b.sydykova@ksph.kz

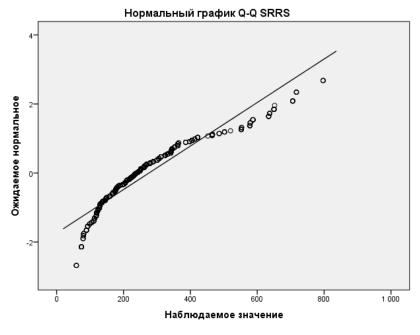

Выбор критерия

Переменная 1	Переменная 2	Анализ
Количественная	Качественная	Алгоритм анализа количественных переменных
Количественная	Количественная	Корреляционный анализ
Качественная	Качественная	Алгоритм анализа качественных переменных
Изучаемая (зависимая) переменная	Переменные, влияние которых на зависимую мы изучаем (независимые переменные)	Регрессионный анализ

Анализ количественных данных

Количественная переменная

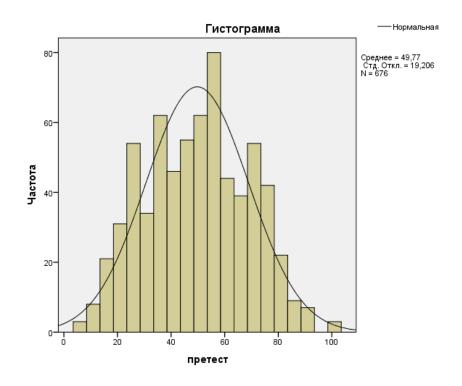

- Проверить распределение.
- Описать переменную (M, Me, SD, IQR)
- ✓ Нормальное распределение М (SD)
- ✓ Распределение отличное от нормального –
 М (Ме, Q1, Q3) или М (Ме, IQR)
- Выбрать критерий
- Провести расчёт
- Интерпретировать
- Сделать вывод

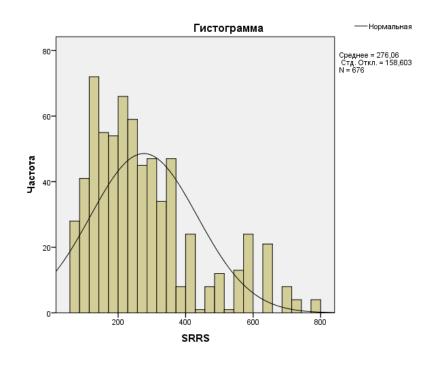


Нормальное распределение

- Q-Q диаграмма
- Гистограмма
- Коэффициент ассиметрии —
- Значение от 0 до 1 нормальное распределение, более 1 отличается от нормального
- Равенство Средней и Медианы

Q-Q диаграмма





• Нормальное распределение

 Отличающееся от нормального распределение

Гистограмма

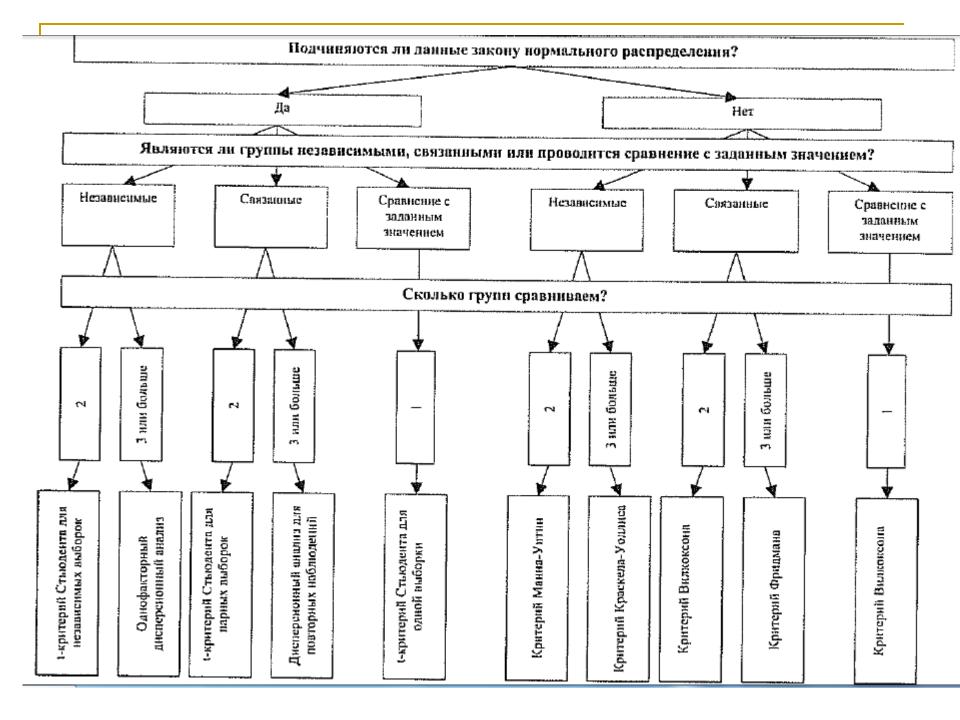
Нормальное распределение

 Отличающееся от нормального распределение

Коэффициент асимметрии М и Ме

SRRS

Претест


			I
Среднее		49,77	,739
95% Доверительный	Нижняя граница	48,32	
интервал для среднего	Верхняя граница	51,22	
Среднее по выборке, усеч	іенной на 5%	49,75	
Медиана		50,00	
Дисперсия		368,887	
Среднекв.отклонение		19,206	
Минимум		6	
Максимум		100	
Диапазон		94	
Межквартильный диапазо	он	30	
Асимметрия		,002	,094
Эксцесс		-,695	,188

Описательные статистики

		Статистика	Стандартная ошибка
Среднее		276,06	6,100
95% Доверительный	Нижняя граница	264,08	
интервал для среднего	Верхняя граница	288,04	
Среднее по выборке, усеч	енной на 5%	264,40	
Медиана		238,00	
Дисперсия		25154,851	
Среднекв.отклонение		158,603	
Минимум		59	
Максимум		797	
Диапазон		738	
Межквартильный диапазо	ЭН	186	
Асимметрия		1,115	,094
Эксцесс		,713	,188

Нормальное распределение

 Отличающееся от нормального распределение

Кратковременная память и стресс у студентов медицинского университета

группа_иссл_контр

	Частота	Процент	
основная группа	367	54,3	
контрольная группа	309	45,7	
Итого	676	100,0	

семейное_положение

	Частота	Процент	B; ſ
холост	613	90,7	
замужем	63	9,3	
Итого	676	100,0	

пол

	Частота	Процент
жен	356	52,7
муж	320	47,3
Итого	676	100,0

курс

	Частота	Процент
1 курс	239	35,4
3 курс	203	30,0
5 курс	234	34,6
Итого	676	100,0

проживание

дети

100.0

	Частота	Процент
собственное жилье	404	59,8
аренда	135	20,0
живет в общежитии	137	20,3
Итого	676	100,0

закончил_школу

		Частота	Процент
!	нет	641	94,8
_	есть	35	5,2
	Итого	676	1000

	Частота	Процент	
город	551	81,5	
село	125	18,5	
Итого	676	100.0	

Кратковременная память и стресс у студентов медицинского университета

- SRRS количественная переменная, обозначающая уровень стресса у студентов, измеряемая анкетой Хомса-Раге (балл)
- Пре-тест, пост-тест —

количественные переменные, обозначающие уровень кратковременной памяти, измеренные при помощи программы N-back (% правильных ответов, min = 0, max=100)

 GPA-before, GPA-after – количественная переменная до и после окончания тренировок памяти студентов в основной группе. Оценивался как в основной, так и в контрольной группе.

План

- SRRS, пре-тест, пост-тест
- Группа исследования, пол, курс

Курс

- 1 курс: M=278,8 (Me=249,0; IQR=199,0)
- 3 курс: M=260,7 (Me=228,0; IQR=196,0)
- 5 курс: M=272,1 (Me=243,0; IQR=197,0)

Статистически значима ли разница? Какой критерий необходимо использовать?

Курс

- 1 курс: M=278,8 (Me=249,0; IQR=199,0)
- 3 курс: M=260,7 (Me=228,0; IQR=196,0)
- 5 курс: M=272,1 (Me=243,0; IQR=197,0)

Критерий Краскела-Уоллиса

H=2,091; p=0,351

Пол

- Жен: M=260,8 (Me=219,5; IQR=196,0)
- Муж: M=293,0 (Me=267,0; IQR=196,0)

Статистически значима ли разница? Какой критерий необходимо использовать?

Пол

- Жен: M=260,8 (Me=219,5; IQR=196,0)
- Муж: M=293,0 (Me=267,0; IQR=196,0)

Критерий Манна-Уитни U=49230,0; p=0,002

Пол

- Жен: M=49,54 (SD=18,8)
- Муж: M=50,02 (SD=19,7)

Статистически значима ли разница? Какой критерий необходимо использовать?

Пол

- Жен: M=49,54 (SD=18,8)
- Муж: M=50,02 (SD=19,7)

t-критерий Стьюдента для независимых выборок = -0,318; df=674; p=0,751

Курс

- 1 курс: M=51,56 (SD=19,1)
- 3 курс: M=48,67 (SD=19,8)
- 5 курс: M=48,89 (SD=18,7)

Статистически значима ли разница? Какой критерий необходимо использовать?

Курс

- 1 курс: M=51,56 (SD=19,1)
- 3 курс: M=48,67 (SD=19,8)
- 5 курс: M=48,89 (SD=18,7)

Однофакторный дисперсионный анализ

Пост-тест

Группа исследования

- Основная: M=59,23 (SD=19,1)
- Контрольная: M=53,77 (SD=19,4)

Статистически значима ли разница? Какой критерий необходимо использовать?

Пост-тест

Группа исследования

- Основная: M=59,23 (SD=19,1)
- Контрольная: M=53,77 (SD=19,4)

 t-критерий Стьюдента для независимых выборок = 3,673; df=674; p<0,001

Пост-тест

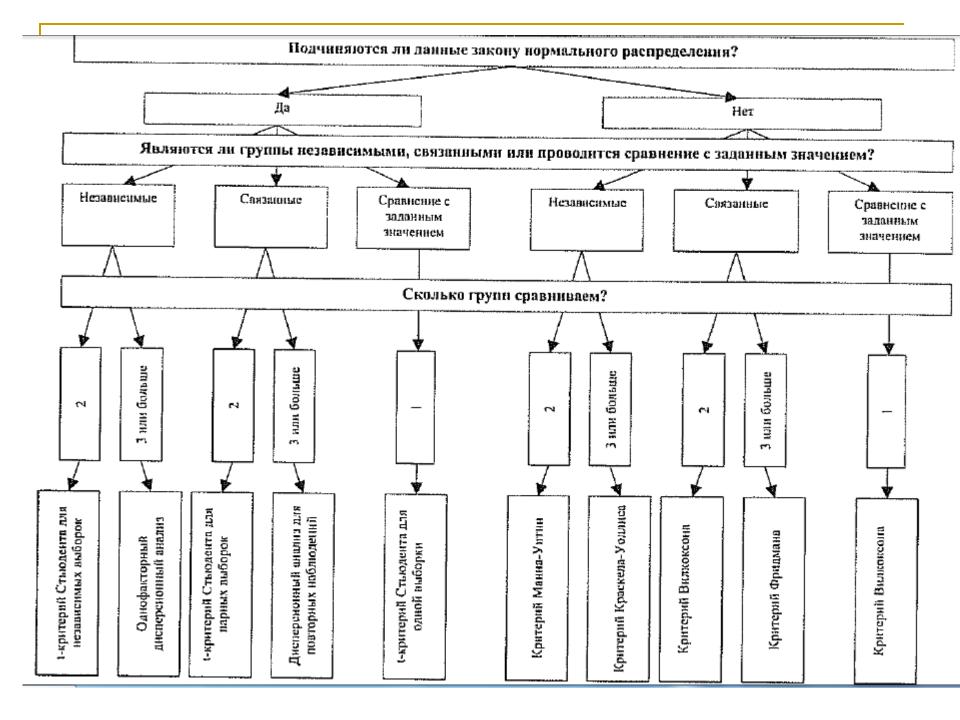
Группа исследования

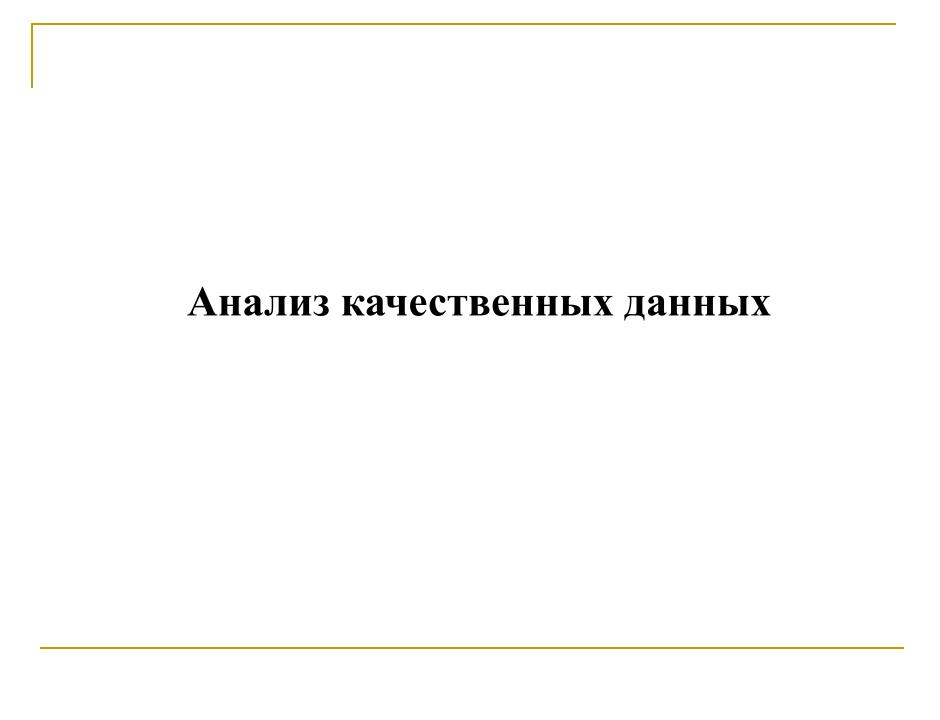
- Основная: M=59,23 (SD=19,1)
- Контрольная: M=53,77 (SD=19,4)

 t-критерий Стьюдента для независимых выборок = 3,673; df=674; p<0,001

Пре-тест / Пост-тест

Группа исследования (по отдельности)

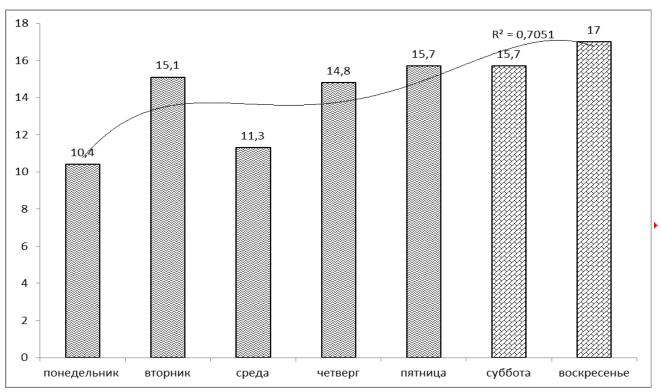

- Основная: M=46,98 (SD=18,9) /
 M=59,23 (SD=19,1)
- Контрольная: M=53,08 (SD=19,0) /
 M=53,77 (SD=19,4)


 Статистически значима ли разница? Какой критерий необходимо использовать?

Пре-тест / Пост-тест

Группа исследования

- Основная: M=46,98 (SD=18,9) /
 M=59,23 (SD=19,1)
- Контрольная: M=53,08 (SD=19,0) /
 M=53,77 (SD=19,4)
- t-критерий Стьюдента для парных выборок
 = 31,943; df=366; p<0,001 (основная)
- t-критерий Стьюдента для парных выборок
 = 1,846; df=308; p=0,066 (контрольная)

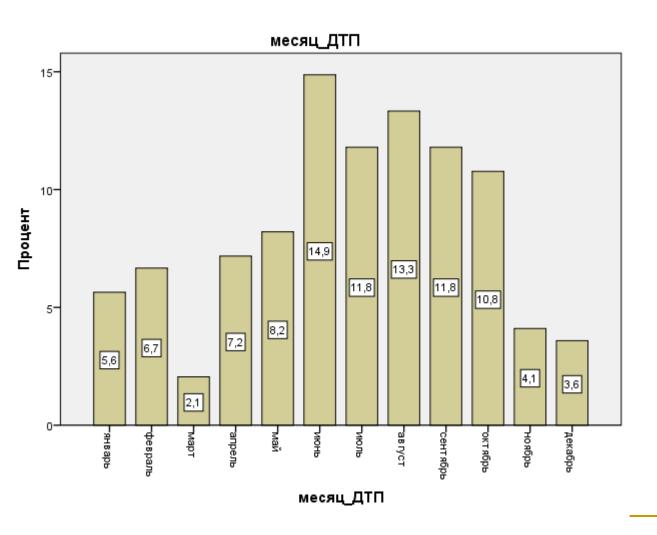


Качественные данные

- Дихотомические (0,1)
- Номинальные (А,В,С)
- Порядковые (I, II, III)

Хи-квадрат Пирсона

На столбиковой диаграмме представлена средняя сезонность летальных случаев в течение недели (%) от ДТП.



Статистики критерия

	день недели ДТП
Хи-квадрат	13,456ª
CT.CB.	6
Асимпт. знч.	,036

а. Частоты, меньшие 5, ожидались в 0 ячейках (0,0%). Минимальная ожидаемая частота равна 27,9.

Хи-квадрат Пирсона

Статистики критерия

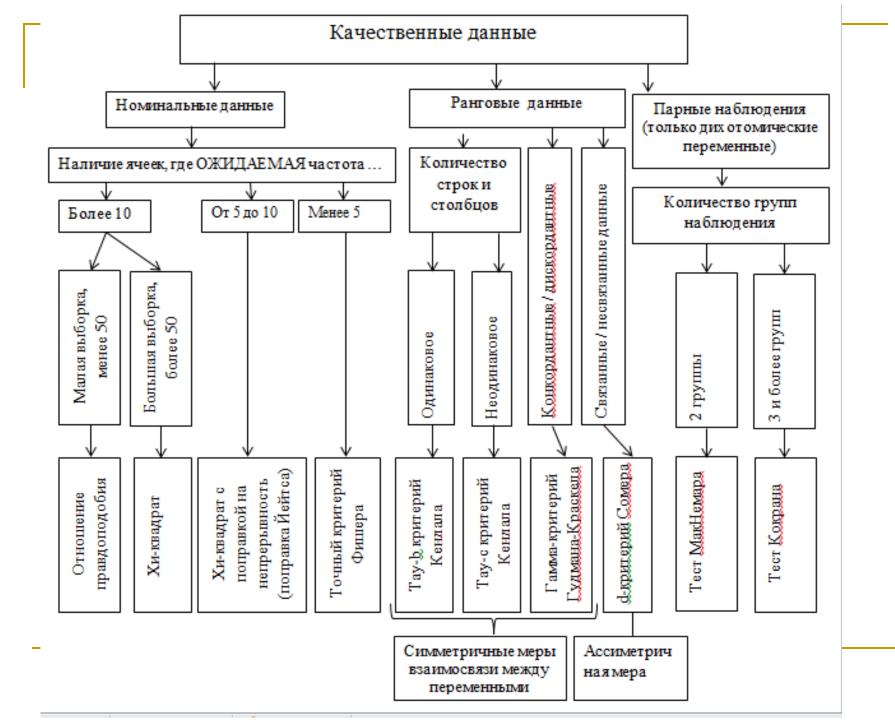
	месяц_ДТП
Хи-квадрат	44,200ª
CT.CB.	11
Асимпт. знч.	,000

а. Частоты, меньшие 5, ожидались в 0 ячейках (0,0%). Минимальная ожидаемая частота равна 16,3.

Что показывает критерий χ^2

- Есть ли взаимосвязь между качественными переменными
- Не показывает где эти различия в случае многопольных таблиц
- Не показывает силу взаимосвязи

Что показыват силу взаимосвязи?


- Phi (От 0 до 1. Только для 2х2 таблиц)
- Коффициент сопряженности (Contingency coefficient) Редко достигает максимума (1)
- Cramer's V (от 0 до 1)
- Отношение шансов (Odds ratio)

Критерии для ранговых переменных

- Kendall's tau-b
- Kendall's tau-c
- Somer's d
- Gamma
- Значения для всех критериев варьирует от -1 до 1.
- Интерпретация как для корреляционного анализа

Аналоги для парных наблюдений

- McNemar test для двух групп
- Analyze->Non-parametric tests->2 related samples.
 Выбрать McNemar
- Cochrane's Q-test для 3 и более
- Analyze->Non-parametric tests->K related samples. Выбрать Cochrane's Q
- Оба критерия только для дихотомических переменных (0:1)

Корреляционный анализ

Корреляционный анализ

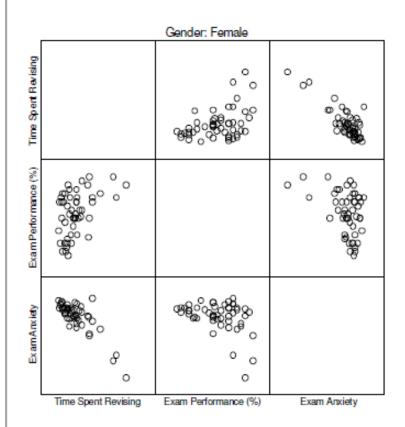
Показывает только меру ассоциации!

Есть или нет (значение р) + силу (коэффициент) + направление (знак)

Корреляционная ≠ причинно-

связь следственная

СВЯ3Ь

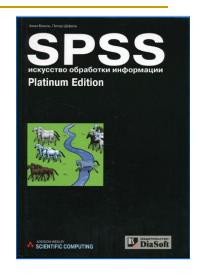

Корреляционный анализ

Две количественные переменные

- Обе нормально распределены коэффициент корреляции Пирсона
- Одна или обе отличается от нормального – коэффициент корреляции Спирмена
- «+» прямо пропорциональная связь
- «-» обратно пропорциональная связь

Проф. Гржибовский А.М.

Корреляционная матрица



- Коэффициент корреляции всегда между -1 и 1.
- 0 нет связи
- 1 идеальная прямопропорциональная зависимость
- -1 идеальная обратнопропорциональная зависимость
- 0.7 сильная связь?
- 0.5 средней силы?
- 0.3 слабая связь?

Ахим Бююль, Петер Цефель

SPSS: искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей.

SPSS Version 10. Einfuhrung in die moderne Datenanalyse unter Windows

Значение коэффициента корреляции г	Интерпретация	
0 < Γ <= 0,2	Очень слабая корреляция	
0,2 < r <= 0,5	Слабая корреляция	
0,5 < Γ <= 0,7	Средняя корреляция	
0,7 < Γ <= 0,9	Сильная корреляция	
0,9 < Γ <= 1	Очень сильная корреляция	

Регрессионный анализ

Регрессионный анализ

- Переменные (факторы), влияние которых мы изучаем, могут быть любыми независимые переменные.
- Переменная (исход), влияние на которую других переменных (факторов) зависимая переменная.

Изучаемая (зависимая) переменная	Название регрессионного анализа
Количественная	Линейный регрессия
Порядковая	Регрессионный анализ в порядковой переменной отклика
Номинальная	Мультиноминальная логистический регрессия
Дихотомическая	Бинарная логистическая регрессия

Выбор критерия

Переменная 1	Переменная 2	Анализ
Количественная	Качественная	Алгоритм анализа количественных переменных
Количественная	Количественная	Корреляционный анализ
Качественная	Качественная	Алгоритм анализа качественных переменных
Изучаемая (зависимая) переменная	Переменные, влияние которых на зависимую мы изучаем (независимые переменные)	Регрессионный анализ

Спасибо за внимание!